作为一名FB投手,对于Facebook广告背后算法机制的探求是永无止境的。


在投放Facebook广告时,无论是首次开始投放,还是在编辑后重新投放,所掌握的数据信息都不足以尽可能稳定地投放广告。为获得这些必要的数据,Facebook必须向不同类型的用户投放广告,以此了解哪些人群最可能执行我们的优化事件 ,这就是Facebook广告背后的竞价机制——“机器学习”。


今天这篇内容,橙四海就和各位FB投手一起来聊聊Facebook机器学习在算法中的作用,揭开“黑盒”机制的神秘面纱。



Facebook机器学习


机器学习是人工智能的实践和应用,具体是通过大数据来训练算法和数据模型,从而更加准确地对新的(未知)数据及指令作出预测和判断。


那么,数据哪里来呢?


首先,对于Facebook,每天有上亿的用户自发地生成各种数据(UGC):照片、影片、语音、文字、社交互动等等。


除此之外,Facebook还可以通过你浏览器的cookie来追踪你在互联网上的一切行为。


比如你浏览过哪些网站?你搜索过哪些内容?你产生过哪些购买行为?


在Facebook的官网中有这样一段话:


“Weuse cookies to help us show ads and to make recommendations forbusinesses and other organizations to people who may be interested inthe products, services or causes they promote.”


所以,Facebook主要是通过追踪浏览器的cookie来收集用户的数据,进而对用户的喜好和行为进行预测,选择最适合的广告呈现在用户面前。


同时Facebook又用cookie来判断控制广告的投放,以及评估广告的质量。


比如确保该广告出现在同一个用户的时间线上不超过X次(impression)。再比如该用户是否与广告产生了交互行为(点击、留言、点赞、购买等等)。


IOS14.5上线之,隐私新规中的用户可自主选择是否允许APP追踪其在网站内的浏览历程,使得Facebook广告一度出现转化归因不准确等情况,也印证了cookie对于Facebook的重要性。


那Facebook广告的机器学习是如何运转的呢?


Facebookad算法是预测性算法(PredictiveAlgorithm)。


简单来说,机器学习的算法通过“学习”广告投放得到的反馈(历史数据),对新的广告投放效果进行预测。


机器学习算法的两大类别:回归算法(Regression)分类算法(classification)。


回归算法的结果是一些连续的值,比如一元二次方程里的一条直线,任意一个横坐标的X值,都可以找到一个对应的Y值。


而分类算法的输出结果并不是连续的,而更像是一段又一段的区间。



例如:


通过分析,分类算法会告诉你,“Yes”还是“No”。


但是回归算法会告诉你“只有68.59%的可能性会买,也有31.41%的可能性不会买”。



实际上,两种算法并不是完全无法不兼容彼此的。


比如你在回归算法的输出层规定区间,“低于60%的值输出No”,“不低于60%的输出值为Yes”,这样回归算法就转化为一个分类算法了。


不管使用哪种算法,在广告投放领域,机器学习的核心都是通过分析audience的特性(demographics),来对TA的行为进行预测。


因为Facebook广告的算法对外界仍然是非公开的,是个黑盒(BlackBox)。所以两种算法其实都有可能,甚至可能是两种算法的结合。


但无论是使用两种算法的哪一种,Facebook广告的LearningPhase都是在不断的训练算法模型,寻找完美的拟合曲线。一旦学习结束,算法就会寻找目标受众中,距离曲线最近的点(潜在受众)。 


而如何让Facebook广告机器学习快速到达这个完美的拟合曲线点?


就需要准备就需要大量的数据,这时候就需要我们Facebook投手出马了!


当我们开始投放广告时,Facebook最初基本是处于盲投的状态,它凭借自己的直觉投放给一些可能对我们的产品感兴趣的受众,

一旦某个用户有了相应的反馈,比如给广告点赞、或者点击了购买链接,Facebook会将该用户的数据收集入你的数据库里。 


但是,前期我们只能积累到一些零星的数据,很有可能是特例,也就是一些电商卖家常说的“偶然单”。所以,投放早期,各位投手切忌胡乱调整广告账户,导致机器学习走向走歪,白白浪费广告预算。


而当我们数据随着时间的积累足够多时,机器也更加容易找到更符合我们目标受众的群体,从而对新的数据进行更加准确的预测,这也就说明了为啥老的广告组很多都可以稳定出单的,而培养一个稳定的广告组正是专业投手最应该做的事。


但这时候很有可能会有小伙伴说:四海尽说废话,谁不知道数据积累的多,广告就更精准,但老板等不及啊!


如果你老板知道Facebook广告这些算法的话,他可能会改变自己的看法?


在Facebook通过自己早期选择受众得到一个小的模型之后,算法会尝试着寻找和这些用户有相似特性的其他用户、并且推送相同的广告来反复确认自己的判断。


如果结果不符合预期,算法就会调整策略,比如调整某个特性的权重。


在这个调整的过程中,有可能会影响到广告主的决策。


比如你的目标受众可能是喜欢踢足球的男生,但是你一开始并没有对兴趣做任何的限制,而Facebook根据它已有的数据可能就“猜测”爱玩儿游戏的受众比较理想。


结果跑了几天,广告效果很差,没有耐心的人有可能就此打住,终止广告。但其实你再坚持一下,广告就可以“看到明天的太阳了”


因为随机性,导致决策的变化,从而影响整个数字营销的效果。 


数据不会说谎,但是片面的数据,会误导我们的判断能力。


因此,各位投手请把这篇内容转给你不是很懂广告,只想要ROI的老板看一下,或许能够让你得到救赎。


关于FB投手如何避免被一些算法的不确定性影响广告投放的效果,橙四海会在下一期内容详细讲解!也欢迎有不同见解的小伙伴在评论区留言,分享自己的看法~







有奖调研


橙四海准备了一份事关出海人自身利益的调研

跨境人最关心的5个问题,只需1分钟时间

所有认真填写问卷内容的伙伴,都可以获得盲盒礼品

还会选出天选用户发出价值200元的专属定制端午礼盒


Tips:对于非选择题,回答的内容多,就有机会获得专属礼盒


长按识别上方二维码参与


?更多内容?

(点击下方查看)


推荐阅读 


新手必读!一文搞定Facebook广告开户频繁受限问题~

福利局!Adspy工具无限免费用独门秘籍手把手教学

产品更新!Facebook新增素材预审功能,力控广告违规

木瓜移动是一家由清华、斯坦福、谷歌背景的海归精英创立于2008年,专注于SaaS领域和出海营销解决方案的科技公司,致力于帮助优质的中国企业分享全球市场。


木瓜移动旗下的SaaS平台聚合多重工具,包括:投放管理、数据管理、客户管理、支付管理等,同时也是Facebook、Google中国区顶级代理。


木瓜移动的客户覆盖电商、游戏、应用、汽车、数码、教育、金融等众多领域,包括:阿里巴巴、腾讯、百度、字节跳动、携程旅游、汽车之家、360、美的等众多知名品牌。目前已成功助力超5000家企业打开全球市场,每年为客户实现海外广告曝光量超1,000亿次。



END



更多营销秘诀,尽在木瓜移动
专业出海平台,懂的不止多一点
为你匹配最优营销方案,伴你展开出海征程

点击阅读原文,立即咨询


点赞(4) 打赏

评论列表 共有 0 条评论

暂无评论

服务号

订阅号

备注【拉群】

商务洽谈

微信联系站长

发表
评论
立即
投稿
返回
顶部